A New Foundation of Non-Euclidean, Affine, Real Projective and Euclidean Geometry
نویسندگان
چکیده
منابع مشابه
Affine Geometry, Projective Geometry, and Non- Euclidean Geometry
1. Affine Geometry 1.1. Affine Space 1.2. Affine Lines 1.3. Affine transformations 1.4. Affine Collinearity 1.5. Conic Sections 2. Projective Geometry 2.1. Perspective 2.2. Projective Plane 2.3. Projective Transformations 2.4. Projective Collinearity 2.5. Conics 3. Geometries and Groups 3.1. Transformation Groups 3.2. Erlangen Program 4. Non-Euclidean Geometry 4.1. Elliptic Geometry 4.2. Hyperb...
متن کاملEuclidean Geometry before non-Euclidean Geometry
In [3], in my argument for the primacy of Euclidean geometry on the basis of rigid motions and the existence of similar but non-congruent triangles, I wrote the following: A: “The mobility of rigid objects is now recognized as one of the things every normal human child learns in infancy, and this learning appears to be part of our biological progaramming.” B. “. . . we are all used to thinking ...
متن کاملSpatial Analysis in curved spaces with Non-Euclidean Geometry
The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...
متن کاملNon-euclidean Affine Laminations
The purpose of the present paper is to discuss examples of aane Riemann surface laminations which do not admit a leafwise Euclidean structure. The rst example of such a lamination was constructed by Ghys Gh97]. Our discussion is based on the geometric methods developed by Lyubich, Minsky and the author LM97], KL01], which rely on the observation that any aane surface A gives rise in a natural w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1938
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.24.10.486